Joint continuity of the local times of fractional Brownian sheets

نویسندگان

  • Antoine Ayache
  • Dongsheng Wu
  • Yimin Xiao
چکیده

Let B = {B(t), t∈ RN+} be an (N,d)-fractional Brownian sheet with index H = (H1, . . . ,HN) ∈ (0,1) N defined by B(t) = (B 1 (t), . . . ,B H d (t)) (t∈ R N + ), where B H 1 , . . . ,B H d are independent copies of a real-valued fractional Brownian sheet B 0 . We prove that if d < ∑ N l=1 H l , then the local times of B are jointly continuous. This verifies a conjecture of Xiao and Zhang (Probab. Theory Related Fields 124 (2002)). We also establish sharp local and global Hölder conditions for the local times of B . These results are applied to study analytic and geometric properties of the sample paths of B . Résumé. Désignons par B = {B(t), t∈ RN+} le (N,d)-drap Brownien fractionnaire de paramètre H = (H1, . . . ,HN) ∈ (0,1) défini par B(t) = (B 1 (t), . . . ,B H d (t)) (t ∈ R N + ), où B H 1 , . . . ,B H d sont des copies indépendantes du drap Brownien fractionnaire à valeurs réelles B 0 . Nous montrons que le temps local de B H est bicontinu lorsque d < ∑ N l=1 H l . Cela résout une conjecture de Xiao et Zhang (Probab. Theory Related Fields 124 (2002)). Nous obtenons aussi des résultats fins concernant la régularité Hölderienne, locale et globale, du temps local. Ces résultats nous permettent d’étudier certaines propriétés analytiques et géométriques des trajectoires de B . MSC: 60G15; 60G17

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local times of fractional Brownian sheets

Let BH 0 = fBH 0 (t); t 2 RN+g be a real-valued fractional Brownian sheet. Consider the (N; d) Gaussian random eld BH de ned by BH(t) = (BH 1 (t); : : : ; BH d (t)) (t 2 RN+ ); where BH 1 ; : : : ; BH d are independent copies of BH 0 . In this paper, the existence and joint continuity of the local times of BH are established. Running Title: Local Times of Fractional Brownian Sheets

متن کامل

Local times of multifractional Brownian sheets

Denote by H(t) = (H1(t), . . . ,HN (t)) a function in t ∈ R+ with values in (0, 1) . Let {B(t)} = {B(t), t ∈ R+} be an (N, d)-multifractional Brownian sheet (mfBs) with Hurst functional H(t). Under some regularity conditions on the function H(t), we prove the existence, joint continuity and the Hölder regularity of the local times of {B(t)}. We also determine the Hausdorff dimensions of the lev...

متن کامل

Properties of Strong Local Nondeterminism and Local Times of Stable Random Fields

We establish properties of strong local nondeterminism for several classes of α-stable random fields such as harmonizable-type fractional stable fields with stationary increments, harmonizable and linear fractional stable sheets. We apply these properties to study existence and joint continuity of the local times of stable random fields. Mathematics Subject Classification (2000). 60G52; 60G17; ...

متن کامل

Harmonizable Fractional Stable Fields: Local Nondeterminism and Joint Continuity of the Local Times

By applying a Fourier analytic argument, we prove that, for every α ∈ (0, 2), the N -parameter harmonizable fractional α-stable field (HFαSF) is locally nondeterministic. When 0 < α < 1, this solves an open problem in [15]. Also, it allows us to establish the joint continuity of the local times of an (N, d)-HFαSF for an arbitrary α ∈ (0, 2), and to obtain new results concerning its sample paths...

متن کامل

Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields.

This paper is concerned with sample path properties of anisotropic Gaussian random fields. We establish Fernique-type inequalities and utilize them to study the global and local moduli of continuity for anisotropic Gaussian random fields. Applications to fractional Brownian sheets and to the solutions of stochastic partial differential equations are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007